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Abstract—Molecular signals are transmitted in a hierarchical
and directed manner, dictating a cell’s response to both internal
and external cues. Although these signaling networks are rep-
resented as directed graphs of genes, they are not consistently
analyzed using methods that leverage the network’s directed
and hierarchical nature. Here, we present a Directed Scattering
transform for Gene Embeddings (DSGE), which captures a
directed and multiscale representation of the gene signaling
network. We perform systematic comparison against existing
undirected, directed, Euclidean, and hyperbolic approaches on
the OmniPath gene network. DSGE outperforms existing meth-
ods on directed link prediction and performs among the best on
standard link prediction. Our preliminary results suggest DSGE
reveals key multiresolution and directed features for predicting
and characterizing gene signaling relationships.

Index Terms—directed graphs, hyperbolic embeddings, gene
networks, representation learning

I. INTRODUCTION

Cellular signaling involves overlapping, directed, and hier-
archical signal transduction cascades [1] that govern a cell’s
response to its environment. This process can be represented
as gene-gene networks. Understanding these networks across
distinct biological settings is key, but methods to represent and
infer gene-gene relationships rarely take into the account their
directionality and hierarchical nature [2], [3].

For directed graphs, one possible approach for constructing
low-dimensional embeddings while preserving directed struc-
ture [4]–[6] is to use the spectrum of a complex Hermitian
matrix known as the magnetic Laplacian. Applied to a variety
of data science tasks [7]–[10], recent works have used it to
construct graph neural networks [11] and related versions of
the scattering transform [12].

Concurrently, developments in hyperbolic geometry show
potential for preserving latent hierarchies [13]–[19] . However,
beyond some preliminary work [20], [21], little has been
done to incorporate hyperbolic geometry into directed graph
learning. Furthermore, there has been no work evaluating
directed and hyperbolic approaches on biological networks.

Here, we describe an approach termed DSGE (Directed
Scattering transform for Gene Embeddings), which learns a
multiscale representation of directed biological networks via
the magnetic Laplacian. We evaluate performance of DSGE-
Euc (Euclidean representation) and DSGE-Hyp (hyperbolic
representation) against baseline methods on the OmniPath
directed gene signaling network [22] (4% reciprocal edges,
Krachkardt hierarchy score (Khs) = 0.757) [18], [23], [24].
We additionally evaluate the top-performing methods on two
smaller subgraphs, demonstrating the utility of directed scat-
tering for capturing directedness and multiscale topology for
biological graphs of various sizes.

Fig. 1. DSGE Schematic A. Construction of directed biological graph B.
Directed scattering transform. C. Low-dimensional embedding via Euclidean
(DSGE-Euc) or hyperbolic (DSGE-Hyp) autoencoder layers.

II. METHODOLOGY

Our goal is to learn an embedding of a hierarchical, directed
graph that preserves both directional and hierarchical informa-
tion. Our method is based on a three-step approach described
in each of the following subsections (Fig. 1).

A. Assembly of directed gene-gene graph

First, we define GO = (VO, EO) as the OmniPath signaling
network, a weighted, directed gene-gene graph where VO is a
set of NO vertices and EO ⊆ VO × VO is a set of directed
edges. G is derived from GO by performing literature-based
confidence edge-pruning using the edge-specific consensus
score ec as defined in [22], so that G = (V,E) where
E = {e ∈ EO : ec ≥ ĉ} for some user-defined threshold
ĉ, and V is the subset of VO with positive degree after the
pruning. Additionally, we set |V | = N, and give all edges of
E unit weight so as not to overemphasize well-studied genes.

B. Directed scattering transform via the magnetic Laplacian

We let A be the (asymmetric) adjacency matrix of G, let
A(s) = 1

2 (A + AT ) be its symmetrized counterpart and let
D(s) be the diagonal degree matrix corresponding to A(s),
i.e. D

(s)
j,j =

∑N−1
k=0 A

(s)
j,k, and D

(s)
j,k = 0 if j ̸= k. Then,

we capture directional information via the phase matrix Θ(q),
where Θ(q) = 2πq(A − AT ), where q ≥ 0. This allows
us to define the complex Hermitian adjacency matrix by
H(q) = A(s)⊙ exp(iΘ(q)), where i =

√
−1 and ⊙ denotes

the Hadamard product (component-wise multiplication). Fi-
nally, we define the normalized magnetic Laplacian L(q), by
L
(q)
N = I − (D(s))−1/2H(q)(D(s))−1/2. It is shown in [11]

that L
(q)
N is positive semi-definite and therefore admits an

orthonormal basis of eigenvectors uk, 0 ≤ k ≤ N − 1 such
that L(q)uk = λkuk, 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1.

Next, following the lead of [12] (Section 7.3), for t ≥ 0,
we let Ht be the heat-kernel matrix defined by Ht =∑N−1

k=0 exp(tλk)uku
∗
k and for a fixed J ≥ 0 we define a
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Method Standard
LP

Directed
LP

Shallow
node2vec [26] 0.756 0.537
PM [13] 0.787 0.525
PM-D [13] 0.740 0.546

Undirected
GNN

GAE [27] 0.874 0.602
HGCN [16] 0.891 0.573
GAE-D [27] 0.874 0.602
HGCN-D [16] 0.886 0.599

Directed GNN MagNet [11] 0.947 0.714
Scattering UDS-AE [28] 0.937 0.581

Ours DSGE-Euc 0.930 0.718
DSGE-Hyp 0.901 0.716

TABLE I
TABLE 1. COMPARISON OF STANDARD AND DIRECTED LP AUROC. BOLD IS

BEST-PERFORMING, UNDERLINED IS SECOND-BEST. PM: POINCARÉ MAP; GAE:
GRAPH AUTOENCODER; HGCN: HYPERBOLIC GRAPH CONVOLUTIONAL NETWORK;

UDS: UNDIRECTED SCATTERING

wavelet frame WJ = {Wj}Jj=0∪{AJ} where W0 = Id−H1,
AJ = H2J , and Wj = H2j−1 −H2j for 1 ≤ j ≤ J .

For a signal x : V → R, we will, in a minor abuse of
notation, identify x with the vector whose k-th entry x[k]
is equal to the value of x at the k-th vertex (in some fixed
ordering). We define the first- and second- order scattering
coefficients of x by S[j]x = H1MWjx for 0 ≤ j ≤ J
and S[j1, j2]x = H1MWj2MWj1x, 0 ≤ j1 ≤ j2, where
M is the entry-wise modulus (absolute value) operator, i.e.
Mx(v) = |x(v)|.1 The zeroth-order scattering coefficient is
defined simply by H1x. In our experiments, we will use N
standard Gaussian random vectors x1, . . . ,xN . We then let
S[v] denote the concatenation of all zeroth-, first-, and second-
order scattering coefficients evaluated at the vertex v and let
S(G) = {S[v] : v ∈ V }.

C. Low-dimensional encoding

The scattering representations S[v] are typically redundant
and unnecessarily high-dimensional. Therefore, our next step
is to apply an autoencoder D◦E so that Ŝ(G) ≈ D(E(S(G)),
i.e. so that ∥S(G) − Ŝ(G)∥22 =

∑
v∈V ∥S[v] − Ŝ[v]∥22 is as

small as possible. We let d denote the dimension of E(S[v]).
In our experiments, we consider two versions of this model:

one with a Euclidean encoder and decoder (DSGE-Euc), and
one with a hyperbolic encoder and decoder (DSGE-Hyp). In
both versions the encoder E and the deconder D are chosen
to be multilayer perceptrons. The difference is that in the
Euclidean version, the matrix multiplicaions are carried out
via standard multiplication and addition operations whereas
in the hyperbolic version they are carried out using using
Möbius addition and multiplication (see, e.g., [15]). The inclu-
sion of hyperbolic operations enables learning representations
informed by hyperbolic in addition to directed geometry.

III. PRELIMINARY RESULTS
A. Evaluation of low-dimensional representations

We first evaluate our approaches for the full OmniPath
graph. Table 1 compares the performance of DSGE-Euc and
DSGE-Hyp versus baseline methods, including directed GNN
MagNet [11] and hyperbolic GNN HGCN [16]. For standard
link prediction (LP) (where negative edges are edges that
do not exist in graph), DSGE-Euc and DSGE-Hyp perform

1The use of H1, rather than AJ , is based on the experimental setup in [12]
and graph-residual convolutions in [25]

OmniPath
Subgraph Method Standard LP Directed LP

0.05
N = 2677

Khs = 0.973

MagNet 0.776 0.717
UDS-AE 0.796 0.541
DSGE-Euc 0.837 0.756
DSGE-Hyp 0.816 0.749

0.25
N = 5771

Khs = 0.867

MagNet 0.876 0.703
UDS-AE 0.878 0.565
DSGE-Euc 0.901 0.735
DSGE-Hyp 0.876 0.734

TABLE II
TABLE 2. COMPARISON OF STANDARD AND DIRECTED LP AUROC FOR TOP

PERFORMING METHODS ON SUBGRAPHS.

comparably to MagNet and undirected scattering, and for
directed link prediction (where negative edges are edges that
are non-existent reciprocals to positive), they outperform all
other methods. These results confirm that methods that account
for directedness outperform undirected methods for node em-
beddings of directed graphs. This also highlights the utility of
scattering for learning multiresolution representations.

B. Evaluation of representations for small signaling graphs

Often, gene relationships need to be characterized for small
networks, such as those containing only genes related to a
particular disease. To this end, we evaluate each method’s
ability to predict links from smaller graphs. Table 2 measures
performance for downsampled OmniPath subgraphs with 5%
(N=2677, Khs = 0.973) and 25% (N=5771, Khs=0.867) of
the graph edges. For both graphs and both tasks, DSGE-
Euc outperformed other top-performing methods. DSGE-Hyp
performed second best for the 5% subsampled graph for both
tasks, and on the directed LP task for the 25% subsampled
graph. These results suggest that scattering is beneficial for
learning the graph topology in smaller networks without over-
smoothing across large neighborhoods (as GNNs can be sus-
ceptible to). We note that DSGE-Euc generally performs a bit
better than DSGE-Hyp, perhaps because of the cumbersome
nature of Riemannian optimization or perhaps because the
OmniPath graph, which has a maximum depth of 6, is not
deep enough to see the benefits of the hyperbolic approach.
In future work, we intend to explore different optimization
methods and deeper graphs.

IV. TRAINING DETAILS

All tasks were trained with an Adam optimizer (or Riem-
manianAdam for hyperbolic methods) for 200 epochs with a
patience of 50 epochs2. All methods learned representations
with node dimension d = 16. The train/val/test split was
85/5/10. PM, GAE and HGCN refer to the implementations
with the symmetrized adjacency matrix, and PM-D, GAE-D,
and HGCN-D refer to the asymmetric matrices. For Node2Vec,
we optimized for walk length and number of walks. For
remaining methods, we optimized learning rate, bias, dropout,
number of layers, activation, and weight decay. For MagNet,
DSGE-Hyp, and DSGE-Euc, we also optimized for q, and for
HGCN, Poincaré map, and DSGE-Hyp, we also optimized for
c. For DSGE, we set J = 15. Results are reported as AUROC
averaged over five runs.

2github.com/KrishnaswamyLab/Directed-Hierarchical-Gene-Networks

https://github.com/KrishnaswamyLab/Directed-Hierarchical-Gene-Networks
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